On the chromatic number of skew graphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

On the injective chromatic number of graphs

We define the concepts of an injective colouring and the injective chromatic number of a graph and give some upper and lower bounds in general, plus some exact values. We explore in particular the injective chromatic number of the hypercube and put it in the context of previous work on similar concepts, especially the theory of errorcorrecting codes. Finally, we give necessary and sufficient co...

متن کامل

On the b-Chromatic Number of Graphs

Computing the chromatic number of a graph is an NP-hard problem. For random graphs and some other classes of graphs, estimators of the expected chromatic number have been well studied. In this paper, a new 0–1 integer programming formulation for the graph coloring problem is presented. The proposed new formulation is used to develop a method that generates graphs of known chromatic number by us...

متن کامل

On the Strong Chromatic Number of Graphs

The strong chromatic number, χS(G), of an n-vertex graph G is the smallest number k such that after adding kdn/ke−n isolated vertices to G and considering any partition of the vertices of the resulting graph into disjoint subsets V1, . . . , Vdn/ke of size k each, one can find a proper k-vertex-coloring of the graph such that each part Vi, i = 1, . . . , dn/ke, contains exactly one vertex of ea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 1978

ISSN: 0095-8956

DOI: 10.1016/0095-8956(78)90006-0